D^2NeRF : Self-Supervised Decoupling of Dynamic and Static Objects from a Monocular Video

C'est ouf ce truc ! Tellement de possibilité ! Dingue !

Given a monocular video, segmenting and decoupling dynamic objects while recovering the static environment is a widely studied problem in machine intelligence. Existing solutions usually approach this problem in the image domain, limiting their performance and understanding of the environment. We introduce Decoupled Dynamic Neural Radiance Field (D^2NeRF), a self-supervised approach that takes a monocular video and learns a 3D scene representation which decouples moving objects, including their shadows, from the static background.

via Twitter : lire l’article source

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.